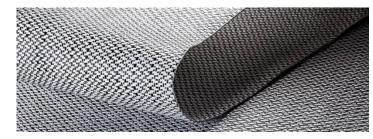


Geosynthetics for Sustainable Road Infrastructure

Prof. Dr.-Ing. Frank Heimbecher

Münster University of Applied Sciences, Germany

Geosynthetics / Geotextiles


Geotextiles

e.g. nonwoven, woven, knitted fabrics water-permeable

Nonwoven

Foto: Huesker



Woven

Foto: Huesker

Geogrids and grid-related

e.g. woven, expanded, layed geogrids; straps, rod-shaped grids, water-permeable

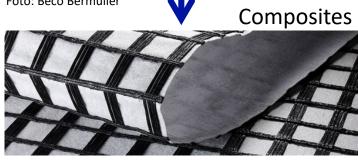

Geogrid

Foto: Huesker

Woven Geogrid

Foto: Beco Bermüller

Geocomposite

Foto: Huesker

Membranes

Synthetic sealing membrane, clay sealing membrane non / marginal water-permeable

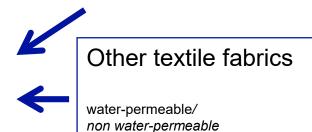

Geomembrane

Foto: Beco Bermüller

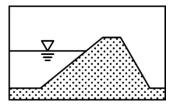
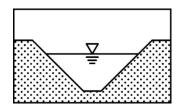
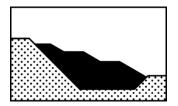
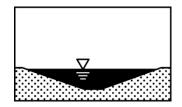
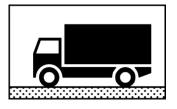

Clay sealing membrane

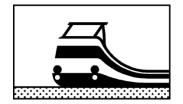
Foto: Huesker

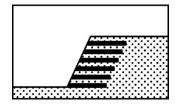


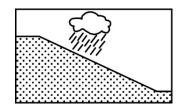




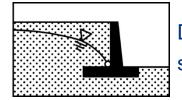

Canals


Solid waste


Liquid waste


Roads

Rail roads



Retaining walls

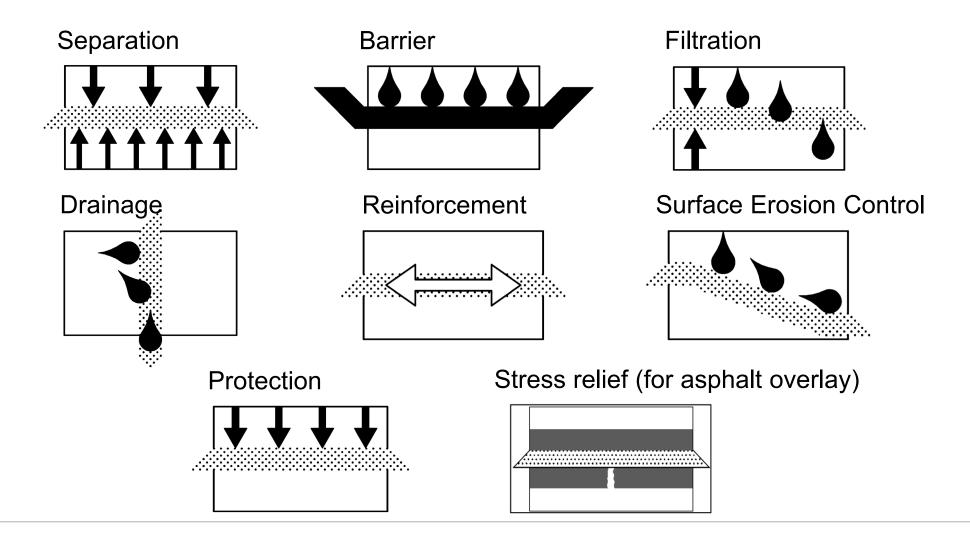
Erosion protection

Drainage systems

Examples

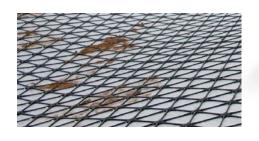
Dam constructions

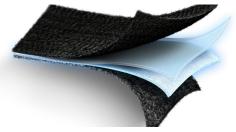
Bridge abutments


Savings mineral building materials (e.g. concrete, crushed stone layer)

source: Huesker Synthetic

Functions according DIN EN ISO 10318-2




Multilayer Geotextiles

- combination of two or more geotextiles
- different layers with same geotextile type or of different types: nonwoven, woven or knitted
- combination of different layers gives the product specific properties based on the particual properties of each layer
- different type of connection between layers
- new functions (e.g. swell or adsorption)

Huesker

Construction Products Regulation (CPR) 305/2011

7 von 20

Essential characteristics of geotextiles shall be laid down in harmonised technical specifications in relation to the basic requirements for construction works.

Prof. Dr.-Ing. Frank Heimbecher

FH MÜNSTER University of Applied Sciences

Construction Products Regulation (CPR) 305/2011

Basic requirement No. 7

Sustainable use of natural resources

The construction works must be designed, built and demolished in such a way that the use of natural resources is sustainable and in particular ensure the following:

- (a) reuse or recyclability of the construction works, their materials and parts after demolition;
- (b) durability of the construction works;
- (c) use of environmentally compatible raw and secondary materials in the construction works

Life-Cycle-Assessment (EPD)

Determination and presentation of environmental effects according to

- EN 15804 and
- EN ISO 14025

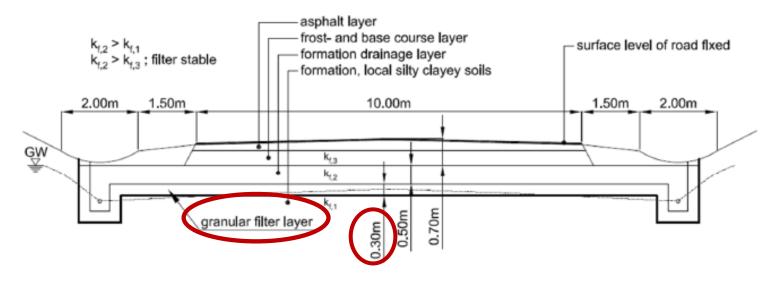
for life cycle phases A, B, C and D

Life-Cycle-Assessment

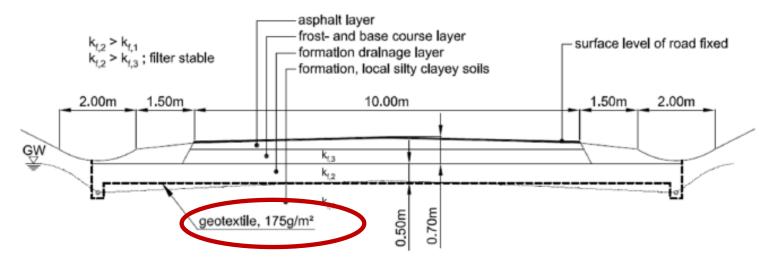
	Description of the system boundary (X = included in LCA)															
Product stage Construction process stage				Use stage							End of life stage				Benefits and loads beyond the system boundary	
Raw material supply	Transport	Manufacturing	Transport	Installation process	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-, Recovery-, Recyclingpotential
A1	A2	A3	Α4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
Х	X	X	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Results of the LCA – Environmental impact: 1 m² geogrid TriAx TX150-GD										
Parameter	unit	A1 – A3								
Global warming potential	[kg CO2-Eq.]	1,04E+00								
Depletion potential of the stratospheric ozone layer	[kg CFC11-Eq.]	5,80E-11								
Acidification potential of land and water	[kg SO2-Eq.]	2,42E-03								
Eutrophication potential	[kg (PO4)3-Eq.]	2,36E-04								
Photochemical Ozone Creation Potential	[kg Ethen-Eq.]	3,55E-04								
Abiotic depletion potential for non-fossil resources	[kg Sb-Eq.]	2,54E-07								
Abiotic depletion potential for fossil resources	[MJ]	3,03E+01								

Life-Cycle-Assessment


Results of the LCA – Resource use: 1 m² geogrid TriAx TX150-GD									
Parameter	unit	A1 – A3							
Renewable primary energy as energy carrier	[MJ]	1,11E+00							
Renewable primary energy resources as material utilization	[MJ]	IND							
Total use of renewable primary energy resources	[MJ]	1,11E+00							
Non-renewable primary energy as energy carrier	[MJ]	1,56E+01							
Non-renewable primary energy as material utilization	[MJ]	1,64E+01							
Total use of non-renewable primary energy resources	[MJ]	3,20E+01							
Use of secondary material	[kg]	IND							
Use of renewable secondary fuels	[MJ]	IND							
Use of non-renewable secondary fuels	[MJ]	IND							
Use of net fresh water	[m³]	4,16E-03							

Results of the LCA — Waste and output flows: 1 m² geogrid TriAx TX150-GD									
Parameter	unit	A1 – A3							
Hazardous waste disposed	[kg]	4,24E-06							
Non-hazardous waste disposed	[kg]	1,32E+00							
Radioactive waste disposed	[kg]	6,53E-04							
Components for re-use	[kg]	IND							
Materials for recycling	[kg]	IND							
Materials for energy recovery	[kg]	IND							
Exported electrical energy	[MJ]	IND							
Exported thermal energy	[MJ]	IND							


EAGM-Study

Case 1A

Case 1B

Life-Cycle-Assessment

	Description of the system boundary (X = included in LCA)															
Product stage				uction s stage			Use stage				End of life stage				Benefits and loads beyond the system boundary	
Raw material supply	Transport	Manufacturing	Transport	Installation process	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-, Recovery-, Recyclingpotential
A1	A2	A3	Α4	A5	B1	B2	В3	B4	B5	B6	B7	C1	C2	C3	C4	D
X	X	X	-	-	-	-	-	-	-	1	-	-	-	-	-	-

Results of the LCA – Environmental impact: 1 m² geogrid TriAx TX150-GD									
Parameter	unit	A1 – A3							
Global warming potential	[kg CO2-Eq.]	1,04E+00							
Depletion potential of the stratospheric ozone layer	[kg CFC11-Eq.]	5,80E-11							
Acidification potential of land and water	[kg SO2-Eq.]	2,42E-03							
Eutrophication potential	[kg (PO4) ³ -Eq.]	2,36E-04							
Photochemical Ozone Creation Potential	[kg Ethen-Eq.]	3,55E-04							
Abiotic depletion potential for non-fossil resources	[kg Sb-Eq.]	2,54E-07							
Abiotic depletion potential for fossil resources	[MJ]	3,03E+01							

Mulitlayer Geotextiles (LCA Stage C and D)

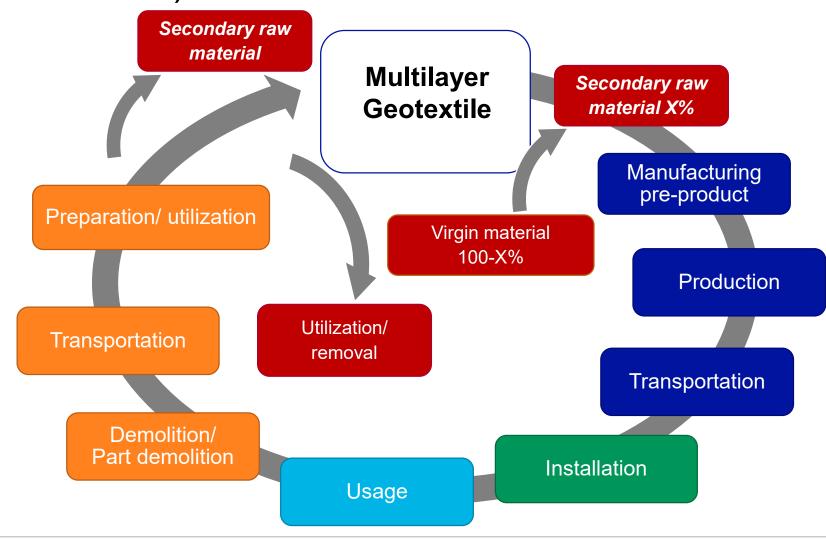

- Procedural separation of the layer
- Purity of the dismantled materials
 - → Use as secondary raw material
- Separation of the geosynthetic residuals out of mineralic material (e.g. soil)
- Ressource conservation of mineralic material

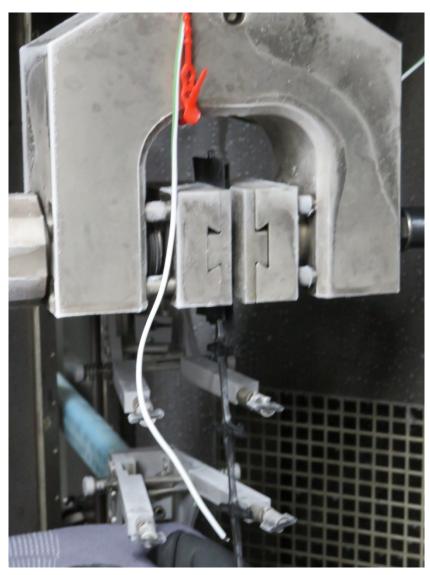
Foto: Herold

Mulitlayer Geotextiles (LCA Stage C and D)

Influence of low temperature on the brittleness of Geosynthetics

Field Conditioning – Kemi, Finland

Prof. Dr.-Ing. Frank Heimbecher

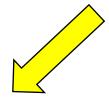


Temperature Conditioning

Tensile Strength Testing at +23°C / 0°C / -10°C / -20°C

Single Rib Testing Procedure

Strength was tested inside a cooling chamber.


source: N. Depenbrock

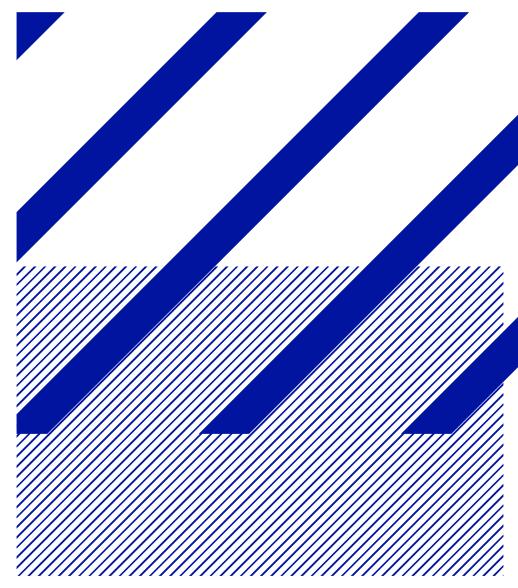
Conclusion

Mulitlayer Geotextiles/Geosynthetics for Road Infrastructure

Ecological – Sustainable – For the Future

 LCA criteria are moving into the focus of the essential characteristics of a product

- LCA-Thinking
- Deconstruction and reuse must be guaranteed
- New business model for producer



- Multifunctional use of geosynthetics with new functions
- Special Tests and Development

Thank you for your attention!

